5 [13] cat code: mab-mtrl2, InVivoGen, San Diego, USA) at the con

5 [13] cat.code: mab-mtrl2, InVivoGen, San Diego, USA) at the concentration 100 ng/ml for 1 h. The cells were then infected with P. acnes as described above. Supernatants were harvested after 24 h and 48 h. Supernatants were cleared from particles by centrifugation 10 min at 12000 g, stored at -20C and later assayed for IL-6, IL-8 and GM-CSF by ELISA (R&D systems, Minneapolis, Minnesota) according to manufacturer’s instruction. RNA preparation and Reverse Transcription PCR Cells were seeded at a density of 1 × 106 in a 25 cm2 culture flask in normal growth medium. After 48 h, cells were washed in PBS and the medium were changed to DMEM without FCS and PEST. Cells were infected

with P. acnes at a MOI of 16:1 and immediate close contact between bacteria and cells were achieved by centrifugation of the flask for 10 min at 700 g. Total RNA was prepared after learn more 0 h and 24 h using RNeasy Mini kit (Qiagen, Hilden, Germany) with the on-column DNase treatment step according to manufacturer’s instruction. Cells were trypsinised using 0,05% MK-8931 nmr (w/v) trypsin/EDTA, lysed in 350 μl RTL buffer and homogenized in a TissueLyser with Stainless steel Beads, 5 mm (Qiagen, Hilden, Germany). RNA concentration and purity were assessed in a NanoDrop© ND-1000 spectrophotometer (Thermo scientific,

Wilmington, USA) at A260 and the ratios of A260:A230 and A260:280. Complementary DNA (cDNA) was generated from one μg total RNA using RT2 First strand kit (SABiosciences, Frederick, MD, USA) according to the manufacturer’s instruction. Quality of the cDNA was verified by PCR array housekeeping genes: beta-2-microglobulin, hypoxanthine phosphoribosyltransferase 1, ribosomal protein L13a, glyceraldehyde-3-phosphate

dehydrogenase, beta-actin using primers from (SABiosciences, CYTH4 Frederick, MD, USA). Real-time BI 2536 nmr Quantitative PCR Gene expression analysis measuring transcription of 84 inflammation associated genes was conducted using the RT2 Profiler PCR Array, Human Toll-Like Receptor Signaling Pathway PAHS-018A (SABiosciences, Frederick, MD, USA) according to manufacturer’s instruction. Real-time PCR detection was performed with an IQ™5 instrument (Bio-Rad, Hercules, CA, USA). Complete list of genes analyzed by the array can be found at: http://​www.​SABiosciences.​com Data Analysis Relative gene expression was calculated with the ΔΔCt method in the web-based software package for RT2 Profiler PCR array systems (SABiosciences, Frederick, MD, USA). Statistical Methods Due to the small sample size (n = 3), a permutation test was used to test possible regulation [38]. A null hypothesis corresponding to no regulation was tested for each gene and each protein concentration and rejected for p = 0.05. Acknowledgements Grant sponsor: Kempestiftelserna (OA, FE, JO); Grant sponsor: Lions Cancer Research Foundation and Cancerforskningsfonden Norrland (JO).

Infect Immun1996,64(9):3524–3531 PubMed 42 Sukhan A, Kubori T, W

Infect Immun1996,64(9):3524–3531.PubMed 42. Sukhan A, Kubori T, Wilson

J, Galan JE:Genetic analysis of assembly of the Salmonella enterica serovar Typhimurium type III secretion-associated needle complex. J Bacteriol2001,183(4):1159–1167.CrossRefPubMed 43. Su J, Gong H, Lai J, Main A, Lu S:The potassium transporter Trk and external potassium modulate Salmonella enterica protein secretion and virulence. Infect Immun2009,77(2):667–675.CrossRefPubMed 44. Datsenko KA, Wanner BL:One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci USA2000,97(12):6640–6645.CrossRefPubMed 45. Lu S, Killoran PB, Riley LW:Association of Salmonella enterica serovar enteritidis yafD with resistance to chicken egg albumen. Infect Immun2003,71(12):6734–6741.CrossRefPubMed 46. Clavijo RI, Loui C, Andersen GL, Riley LW, Lu S:Identification of AZD1390 mouse genes associated with survival of Salmonella enterica serovar Enteritidis in chicken egg albumen. Appl Environ Microbiol2006,72(2):1055–1064.CrossRefPubMed 47. Davis RW, Bolstein D, Roth JR:Advanced Bacterial Genetics.Cold Spring Harbor,

Selleckchem Cilengitide New York: Cold Spring Harbor Laboratory 1980. 48. Lu S, Killoran PB, Fang FC, Riley LW:The global regulator ArcA controls resistance to reactive nitrogen and oxygen intermediates in Salmonella enterica serovar Enteritidis. Infect Immun2002,70(2):451–461.CrossRefPubMed 49. Trang P, Lee M, Nepomuceno E, Kim J, Zhu H, Liu F:Vactosertib purchase Effective inhibition of human cytomegalovirus gene expression and replication by a ribozyme derived from the

catalytic RNA subunit of RNase P from Escherichia coli. Proc Natl Acad Sci USA2000,97(11):5812–5817.CrossRefPubMed Authors’ contributions HG, JS, YB, LM, KK, YY, FL, and SL conceived the study, performed the research, analyzed the results, and wrote the paper. All authors read and approved the final manuscript.”
“Background The bacterial flagellum is an apparatus that projects outward from the cell membrane, and employs rotation of a flexible filament attached to a universal joint (the hook) for propulsion. The flagellum is made up of four components: the of basal body, which houses the flagellar rotary motor and export apparatus; the rod, which spans the periplasm, peptidoglycan, and outer membrane; the hook, which acts as a universal joint; and the filament, which acts as the propulsion device (reviewed in [1, 2]). In order to construct a functional flagellum, the constituent proteins must first be synthesized in the cytoplasm and then be transported to their site of incorporation in a temporally and spatially regulated manner. A specialized Type III secretion system called the flagellar export apparatus is used to transport the individual components of the flagellum across the two cell membranes of gram-negative bacteria [1].