Thus, biased TCR usage and leaky central tolerance might act in a

Thus, biased TCR usage and leaky central tolerance might act in an independent and additive manner to confer high frequency of MART-126–35-specific CD8+ T cells. “
“We have identified previously a nuclear fluorescence reactivity (NFR) www.selleckchem.com/products/dabrafenib-gsk2118436.html pattern on monkey oesophagus sections exposed to coeliac disease (CD) patients’ sera positive for anti-endomysium antibodies (EMA). The aim of the present work was to characterize the NFR, study the

time–course of NFR-positive results in relation to gluten withdrawal and evaluate the potential role of NFR in the follow-up of CD. Twenty untreated, 87 treated CD patients and 15 healthy controls were recruited and followed for 12 months. Their sera were incubated on monkey oesophagus sections to evaluate the presence of NFR by indirect immunofluorescence analysis. Duodenal mucosa samples from treated CD patients were challenged with gliadin peptides, and thus the occurrence of NFR in culture supernatants was assessed. The NFR immunoglobulins (Igs) reactivity with the nuclear extract of a human intestinal cell line was investigated. Serum NFR was present in all untreated CD patients, persisted up to 151 ± 37 days from gluten withdrawal and reappeared in treated CD patients under dietary transgressions. Serum NFR was also detected in two healthy controls. In culture supernatants of coeliac intestinal mucosa challenged with gliadin peptides,

NFR appeared before EMA. The Igs responsible for NFR were identified as Cyclin-dependent kinase 3 belonging to the IgA2 subclass. The NFR resulted differently from EMA and anti-nuclear antibodies, but

reacted with two nuclear selleck kinase inhibitor antigens of 65 and 49 kDa. A new autoantibody, named NFR related to CD, was described. Furthermore, NFR detection might become a valuable tool in monitoring adherence to a gluten-free diet and identifying slight dietary transgressions. Coeliac disease (CD) is a chronic inflammatory disorder triggered by the ingestion of wheat gluten and other storage proteins in rye and barley [1], while the role of oat is still debated [2]. This condition represents the most frequent food intolerance worldwide [3]. A T cell-mediated immune response against gluten fractions (gliadins and glutenins), that takes shape in the small bowel mucosa of individuals bearing the human leucocyte antigen (HLA) alleles DQ2/8 [4], is considered the pivotal event in the pathogenesis of CD [5–7]. As well as the cellular immune response, CD patients show antibodies against gliadin itself (anti-gliadin: AGA; anti-deamidated gliadin peptides: DGP) [8,9] as well as against muscolaris mucosae of the primate oesophagus (anti-endomysium: EMA) [10]. The enzyme tissue transglutaminase (tTG) has been identified as the main endomysial antigen [11]. However, it has been demonstrated that tTG is not the only autoantigen associated with CD, and other tissue components are considered to be involved in the CD-related autoimmunity [12–15].

Comments are closed.