The method is then applied to an epidermal growth factor receptor (EGFR) network model. It turns out that only about 34% of the network components are required to yield the correct response to the epidermal growth factor (EGF) that was measured in the experiments, whereas the rest could be considered as redundant for this purpose. Furthermore, it is shown that parameter sensitivity on its own is not a reliable tool for model reduction, because highly sensitive parameters are not always retained, whereas slightly sensitive parameters are not always this website removable. (c) 2012 Elsevier Ltd. All rights reserved.”
“Amyotrophic lateral
sclerosis (Lou Gehrig’s disease) is a devastating neurodegenerative disorder for which the only licensed treatment is riluzole. Although riluzole clinical efficacy is rather limited, its use has important implications for identifying those parameters that might improve its clinical benefits (dose, timing, disease stage) and for its off-label administration in other neurodegenerative diseases, such as spinal cord injury. Studies of riluzole also have an intrinsically heuristic value to unveil mechanisms regulating the excitability of brain and spinal neurons because this drug is a pharmacological
tool to probe the function of certain ion channels, or to study neurotransmitter release processes, and intracellular neuroprotective pathways.
The present review focuses on how riluzole CHIR-99021 acts on brain and spinal neurons within Tideglusib clinical trial motor networks, what mechanisms can be deduced from its effects, and what conditions may favor its use to contrast neurodegeneration or to ameliorate late symptoms like spasticity. Taking as an example the experimental neurodegeneration caused by overactivation of glutamatergic synapses (excitotoxicity), it seems likely that protection of motor networks by riluzole involves selected administration timing and dosing to target processes for releasing glutamate from very active synapses or for dampening repetitive firing by hyperfunctional motor cells.”
“Accurate measurement of cerebral lactate is critical to the understanding of brain function for psychiatric disorders such as panic disorder and bipolar disorder as well as mitochondrial dysfunction. Proton magnetic spectroscopic imaging (MRSI) techniques can be used to study lactate in vivo; however, accurate measurement of cerebral lactate, which is normally at low basal abundance, can be challenging. In this study, regional lactate measurements obtained with two different MRSI analytic approaches were evaluated using proton echo-planar spectroscopic imaging (PEPSI) data from 18 healthy adults participating in an in vivo sodium lactate infusion study.