Sequencing was performed using PF-6463922 ABI310 Genetic Analyser (Applied Biosystems), and data were collected using ABI Prism 310 Data Collection Software. Results and discussion All the positive and negative controls used in this study were selected by Sanger sequencing of patients’ samples. The results obtained using endonuclease
restriction, ARMS and HRM were verified with those obtained using Sanger sequencing to determine the specificity of the assays. Sensitivity was measured as the minimal percentage of mutated allele in a sample detected by the assay. The initial portion of mutation was determined using Sanger sequencing. DNMT3A mutation analysis Endonuclease restriction analysis identified DNMT3A R882H G>A mutations in 28 out of 230 patients with AML (12.2%) and HRM analysis identified 2 additional R882X G>C mutations (0.9%), which are consistent with the frequency published by Lin et al. [28]. The age of the patients ranged from 24 to 87 years (median, 58 years). Among these patients, 53% had a normal karyotype. None of the patients in the prognostic favourable group had DNMT3A mutations. Of 30 patients, 16 had FLT3 mutations. Figure 1 provides a representative result of restriction analysis with 5 positive selleck kinase inhibitor and 2 negative samples. Point mutation at R882H (GCCGC to GCCAC) led to the loss of
one recognition site of Fnu4HI, thus creating a larger 289 bp
fragment. Because of heterozygosity, the 190 bp wt fragment and the smaller 114 bp fragment are present in every sample. Sensitivity of the assay was analysed using serial dilutions of wt and DNMT3A R882H-mutated DNA (initial mutation ratio in Sanger sequencing was 59%, Figure 2.1). The fragment containing the mutation was explicitly apparent with a mutational content of 0.05%, indicating a very high sensitivity of the assay. In addition mutations in exon 23 of DNMT3A were detected using HRM analysis. Results of HRM analysis were plotted as a difference in the fluorescence of the tested sample versus that of a wt control (normalisation line), referred to as a temperature-shifted difference plot (Figure 3.1). Discrepancies between mutated and wt samples could also be observed in the melting plot profiles. Sample containing R882H mutation Nintedanib (BIBF 1120) showed 2 peaks at 84.5°C and 85.6°C, GSK2118436 whereas the wt samples showed only 1 peak at 85.7°C. Compared to the wt allele, R882X allele was slightly shifted to the left, with a melting temperature of 85.6°C (Figure 3.2). Sensitivity of the HRM assay was assessed similar to that of restriction analysis. The assay had high confidence (97%-99%) for the mutated allele up to a mutation ratio of 5.9% (Figure 2.2). Lower mutation ratios could not be assigned as positive and were identified as false negative with a confidence of 92%-98%.