Interest has been focused on epicardial AT (EAT) because of its possible involvement with atherosclerosis and cardiovascular diseases. The aim of this study was to characterize adipocyte size and inflammatory profile in subcutaneous (SAT) and EAT among subjects with or without diabetes. Biopsies were collected from SAT and EAT in 34 men undergoing elective cardiac surgery. Weight, selleck compound height, body mass index, waist circumference, as well as serum levels of glucose, insulin, lipids, adiponectin, and leptin were determined in all subjects. Adiponectin,
MCP-1, and CD68 mRNA levels present within cells from AT biopsies were determined by real-time polymerase chain reaction. Adipocyte size was determined by optic microscopy and morphometry. Regarding the experimental group as a whole, gene-expression levels within EAT were significantly lower for adiponectin and higher, albeit not significantly, for MCP-1, when compared with that of SAT. In addition, adipocytes in EAT were significantly smaller than those in SAT. Subjects
with diabetes showed lower adiponectin gene-expression levels in both SAT and EAT when compared with subjects without diabetes. By contrast, MCP-1 and CD68 gene-expression levels were higher in both tissue types of diabetic subjects. BLZ945 Adipocyte size in EAT was significantly larger in diabetic subjects than in nondiabetic subjects. Our data revealed a predominantly inflammatory profile in both SAT and EAT in subjects with selleck products diabetes in comparison with those without diabetes.”
“BACKGROUND: The fermentable sugars in lignocellulose are derived from cellulose and hemicellulose, which are not readily accessible to enzymatic hydrolysis because of their biological resistance, so that pretreatment of lignocellulose is needed for this process. In this work, a novel lignocellulose pretreatment method using alkali solution assisted by photocatalysis was investigated.
RESULTS:
The reaction conditions of nano-TiO(2) dosage and photocatalysis time were optimized at 2 g L(-1) and 1 h, respectively. After pretreatment under these conditions, cellulose in rice straw was increased from 37.5% to 71.5%, and lignin decreased from 18.5% to 9.0%. The results of X-ray diffraction (XRD), Fourier transform infrared (FT-IR) and scanning electron microscopy (SEM) analysis showed that the physical properties and microstructure of the straw were changed by this pretreatment, which favored the following enzymatic hydrolysis. The enzymatic hydrolysis rate of the straw pretreated using this technology was verified to be 73.96%, which was 2.56 times higher than that obtained with the alkali procedure.
CONCLUSION: The proposed photocatalysis pretreatment technology was more efficient at degrading the lignin and hemicellulose in rice straw than alkali pretreatment, making it more readily available for the following enzymatic hydrolysis process.